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Machine Learning-based Prediction of HBV-related
Hepatocellular Carcinoma and Detection of Key Candidate
Biomarkers
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ABSTRACT

Objective: This study aimed to classify open-access gene expression data
of patients with hepatitis B virus-related hepatocellular carcinoma (HBV
+ HCC) and chronic HBV without HCC (HBV alone) using the XGBoost
method, one of the machine learning methods, and reveal important
genes that may cause HCC.

Methods: This case-control study used the open-access gene expression
data of patients with HBV + HCC and HBYV alone. Data from 17 patients
with HBV + HCC and 36 patients with HBV were included. XGBoost was
constructed for the classification via 10-fold cross-validation. Accuracy,
balanced accuracy, sensitivity, selectivity, positive-predictive value, and
negative-predictive value performance metrics were evaluated for model
performance.

Results: According to the feature-selection method, 18 genes were
selected, and modeling was performed with these input variables.
Accuracy, balanced accuracy, sensitivity, specificity, positive-predictive
value, negative-predictive value, and F1 score obtained from XGBoost
model were 98.1%, 98.6%, 100%, 97.2%, 94.4%, 100%, and 97.1%,
respectively. Based on the predictor importance findings acquired from
XGBoost, the RNF26, FLJ10233, ACBD6, RBMI12, PFAS, H3CIl, and GKP5
can be employed as potential biomarkers of HBV-related HCC.
Conclusions: In this study, genes that may be possible biomarkers of
HBV-related HCC were determined using a machine learning-based
prediction approach. After the reliability of the obtained genes are
clinically verified in subsequent research, therapeutic procedures can be
established based on these genes, and their usefulness in clinical practice
may be documented.

Keywords: Hepatocellular carcinoma, hepatitis B infection, chronic liver
disease, gene expression

(o)

Amag: Bu calisma, makine o6grenmesi yontemlerinden XGBoost
yontemi kullanilarak hepatit B virtsu iliskili hepatoselliiler karsinom
(HBV + HCC) ve HCC'siz kronik HBV (tek basina HBV) olan hastalarin
acik erisimli gen ekspresyon verilerini siniflandirmayi ve HCC'ye neden
olabilecek 6nemli genleri ortaya ¢ikarmayr amaglamaktadir.

Yontemler: Bu olgu-kontrol calismasinda, yalnizca HBV + HCC ve
HBV'li hastalarin agik erisimli gen ekspresyonu verileri kullanilmistir.
Bu amagla, calismaya HBV + HCC'li 17 hastadan ve tek basina HBV'li 36
hastadan alinan veriler dahil edildi. Siniflandirma i¢in on katli capraz
gegerlilik yoluyla XGBoost modeli olusturuldu. Model performansi
icin dogruluk, dengelenmis dogruluk, duyarlilik, segicilik, pozitif
tahmin degeri, negatif tahmin degeri ve F1 skor performans metrikleri
degerlendirildi.

Bulgular: Ozellik secim yéntemine gére 18 gen secilmis ve bu girdi
degiskenleri ile modelleme yapilmistir. XGBoost modelinden elde
edilen dogruluk, dengelenmis dogruluk, duyarlilik, 6zgilluk, pozitif
prediktif deger, negatif prediktif deger ve FI1 skoru sirasiyla %981,
%98,6, %100, %972, %94,4, %100 ve %97,1 idi. XGBoost'tan elde
edilen degisken 6nemliligi degerlerine gére, RNF26, FLJ10233, ACBD6,
RBMI2, PFAS, H3Cl1ve GKP5genleri, HBV ile iliskili HCC igin potansiyel
biyobelirtegler olarak kullanilabilir.

Sonuglar: Arastirma sonucunda, makine 6grenmesi temelli tahmin
yaklasimiile HBVile iligkili HCCigin olasi biyobelirteg olabilecek genler
belirlendi. Elde edilen genlerin guvenilirligi sonraki arastirmalarda
klinik olarak dogrulandiktan sonra, bu genlere dayali olarak terapétik
prosedirler olusturulabilir ve bunlarin klinik pratikteki yararlan
belgelenebilir.

Anahtar kelimeler: Hepatoselluler karsinom, hepatit B enfeksiyonu,
kronik karaciger hastaligi, gen ifadesi
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INTRODUCTION

Current epidemiological and clinical data indicate
that primary liver cancer is the sixth most frequently
diagnosed cancer and the fourth among cancer-related
deaths worldwide'. Approximately 841,000 people
are diagnosed with primary liver cancer each year, and
782,400 people died from it. Hepatocellular carcinoma
(HCC) accounts the majority of primary liver cancer cases.
HCC is the world's fifth most common malignant tumor,
with the second-highest mortality rate among malignant
tumors?3. The most important risk factors associated with
HCC are hepatitis B virus (HBV), hepatitis C virus, alcohol
abuse, and non-alcoholic fatty liver disease*.

HBV infection is a global public health problem
that causes significant morbidity and mortality. HBV
is responsible for more than half of all HCC cases
worldwide. The proportion of HCC attributable to HBV
reflects the geographic distribution of HBV infection and
varies significantly, accounting for <20% of all HCC cases
in the United States and up to 65% in China and the Far
East. Chronic HBV carriers have a 10- to 25-fold higher
lifetime risk of developing HCC than non-infected ones®.

Epidemiological studies have shown that many risk
factors, especially hepatotropic viruses such as HBY,
affect HCC development. Three basic mechanisms are
suggested for HCC development from the background of
HBYV infection: (1) development of chronic inflammation
and hepatocyte regeneration during the HBV infection
process, (2) activation of the host genes responsible for
proliferation as a result of the integration of the HBY DNA
into the host genome, and (3) HBV-related proteins (HBx,
etc.) support cell proliferationé. These results show that
HBV-related HCC is considered not only a clinical disease
but also a disease with a genetic basis. The biologically
different behavioral patterns of the tumor indicate that
genetic and epigenetic aberrations may be important in
the HCC development and course’® With the detection of
genetic and epigenetic anomalies in the pathogenesis of
HCC, studies on the molecular pathogenesis of HCC have
gained tremendous momentum in the last two decades.
In these studies, thousands of genes, transcription, and
translation pathways associated with these genes are
analyzed, which is a complex and challenging process.
Therefore, artificial intelligence (Al) models are needed
to analyze thousands of data and interpret the analyses.

Machine learning (ML) is a subfield of Al that make
predictions about new data by performing data-driven
learning when exposed to new data. Al/ML methods
are one of the technologies widely used in diagnosing
diseases and clinical decision support systems in recent
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years and have a wide application area. ML has a wide
application area in health and constitutes the basic
infrastructure of applications in determining genetic
diseases, early diagnosis of cancer, and identifying
patterns in medical imaging. In the last decade, with
the availability of large datasets and greater computing
power, ML methods have achieved high performance in
various situations®'°. At present, it is essential to diagnose
HCC, determine or predict the genes that cause HCC as
biomarkers, and use them concerning the HCC stage.
Thus, many studies have used ML methods to identify
genes that may be biomarkers related to HCC'". A study
used gene expression profiling and supervised ML to
predict HBV-positive metastatic HCCs'% In another study,
genes that could be biomarkers were identified by ML
methods using genome-wide data to predict relapse in
patients with HCC®. This study aimed to classify open-
access gene expression data of patients with HBV-related
HCC (HBV + HCC) and chronic HBV without HCC (HBV
alone) using XGBoost and reveal important genes that
may cause HCC.

MATERIALS and METHODS
Study Design and Data

This is a retrospective case-control study, and
XGBoost, one of the ML methods, was applied to open-
access gene expression data of patients with HBV-related
HCC and chronic HBV without HCC. Data from 17 HBV-
related HCC and 36 chronic HBV samples were analyzed.
Complementary DNA (cDNA) microarrays obtained from
liver samples were used™. cDNA refers to a piece of DNA
synthesized from a mature mRNA used as a template in
a reaction catalyzed by the enzyme reverse transcriptase.
cDNA is the double-stranded DNA version of the
MRNA molecule. mRNA is more helpful in determining
polypeptide sequence than the genomic sequence in
eukaryotes. Since introns are cut out, researchers prefer
to work with cDNA rather than mRNA. Therefore, RNA
is inherently more unstable than DNA. In addition, no
amplification and purification technique can be applied
to the RNA molecule. mRNA is used as a template, and
reverse transcriptase synthesizes single-stranded DNA
molecules. This molecule is then utilized to synthesize
double-stranded DNAP.

Feature Selection

Variable selection is an essential step in predictive
modeling processes. One of the most critical steps in
developing a statistical model is deciding which data
to include in the model. Before working with large
datasets and models with high computational costs,



determining the most valuable features of the dataset
to be used in the study will lead to highly efficient
results. Feature selection identifies the most prominent
features that affect a data set’s dependent variable. The
use of numerous explanatory variables can lead to long
computation times and risk of overlearning the data and
obtaining biased results. In addition, models created with
numerous variables are challenging to interpret. Before
statistical modeling, selecting important variables that
affect the dependent variable is recommended's. Most
ML and data-mining methods can produce ineffective
results when working with extensive data. Therefore,
these methods give more effective results when the
dimensionality is reduced".

Gene expression datasets are large and complex and
include raw data for the analyses. Modeling analyses take
a long time because gene expression datasets are large,
and these datasets can cause computational inefficiency
in the analysis. As a result of the high-dimensionality
issue, the model's performance may suffer. A classification
algorithm can also overfit the training samples and under
generalize new samples if there are numerous genes in
gene expression datasets. In this study, LASSO, one of
the feature-selection methods, was used to solve these
problems. The LASSO method requires that the sum
of the model parameters’ absolute values be less than
a fixed value (upper limit). The method achieves this by
penalizing the coefficients of the regression variables,
causing some of them to drop to zero. Besides, the
dataset should have many variables and few observations.
Furthermore, by removing irrelevant variables unrelated
to the response variable, LASSO improves model
interpretability and eliminates overlearning'®.

XGBoost Algorithm

Gradient boost is defined as a powerful ML technique
for regression and classification problems where weak
predictive models often produce ensemble forms of
decision trees. Gradient boost aims to construct many
weak learners in sequence and incorporate them into
a complex model because it is based on the boosting
method".

XGBoost, the abbreviation for extreme gradient
boosting, is one of the applications of gradient boosting
machines, which is one of the most effective supervised
learning algorithms. Its basic structure is established on
gradientboostinganddecision-treealgorithms.Compared
with other algorithms, it is in a very advantageous
position regarding speed and performance. Additionally,
XGBoost is highly predictive, 10 times faster than other
algorithms, and includes several regularizations that
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improve overall performance and reduce overfitting or
overlearning. Gradient boosting is an ensemble method
that combines weak classifiers with boosting to create a
robust classifier. The strong learner is trained iteratively,
starting with a basic learner. Both gradient boosting and
XGBoost follow the same principle. They mainly differ
in the implementation. By using different regularization
techniques, XGBoost can achieve better performance by
controlling the complexity of the trees®.

Bioinformatics Analysis

For patients (HBV + HCC and HBV alone) whose
gene expression profiles were examined, differential
expression analyses were performed using the limma
package in the R programming language?®. Differential
expression analysis is the statistical analysis of normalized
read count data to find quantitative differences in
expression activities between treatment arms. A pipeline
is designed for the relevant analyses via the R software
environment. The achieved results are presented from
a table of genes in order of importance and a graph to
visualize differentially expressed genes. The result table
contains adjusted P and log2-fold change (Log FC) values,
and genes with the smallest p values will be most reliable.
Log,FC >1 was used to identify upregulated genes, and
Log,FC <-1 was used to identify downregulated genes”.
A volcano plot was graphed to highlight quickly large
values regarding the relevant genes.

Study Protocol and Ethics Committee Approval

This study, which used the National Center for
Biotechnology Information Gene Expression Omnibus
open-access dataset involving human participants, was
conducted inaccordance with the ethical standards of the
institutional and national research committee and with
the 1964 Helsinki Declaration and its later amendments
or comparable ethical standards. Ethical approval was
obtained from the Inonu University Institutional Review
Board for Non-Interventional Clinical Research (decision
no: 2022/3646, date: 07.06.2022). Strengthening the
Reporting of Observational Studies in Epidemiology
guideline was utilized to assess the likelihood of bias and
overall quality of this study.

Statistical Analysis

The Shapiro-Wilk test of normality was used to
determine whether the variables followed a normal
distribution. Data were given as median (minimum-
maximum) or mean * standard deviation. The Mann-
Whitney U test was employed to compare non-normally
distributed data, and independent-sample t-tests were
utilized to compare non-normally distributed data, where
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appropriate. Logistic regression analysis was performed
to estimate each gene's odds ratio (OR) (a measure
of effect size). Hosmer and Lemeshow's test for the
goodness of fit and omnibus test of model coefficients
were calculated for logistic regression. P-value <0.05 was
considered significant. IBM SPSS Statistics, version 25.0,
was used in the analysis.

Modeling Process

XGBoost, one of the ML methods, was used in the
modeling. Analyses were conducted using the n-fold
cross-validation method. In the n-fold cross-validation
method, data were first divided into n parts, and the
model used was applied to n parts. One of the n parts
is used for testing, whereas the other n-1 parts are
used for training the model. The mean of the obtained
values is evaluated for the cross-validation method. In
this study, 10-fold cross-validation was employed for
the modeling process. Accuracy, balanced accuracy,
sensitivity, selectivity, positive-predictive value, negative-
predictive value, and Fl-score were used as performance
evaluation criteria. In addition, variable importances were
calculated, which gives information about how much the
input variables explain the output variables.

RESULTS

In this study, 53 patients (HBV + HCC =17; HBV alone
=36) were used, of which 42 were male and 11 were female.

The mean age of the patients was 54.91%13.76 years.
While 15 of the HBV + HCC group were male and two
were female, 27 patients in the HBV alone group were
male and nine were female. The mean age of patients
with HBV + HCC was 60.47%9.01 years, and the mean
age of patients with HBV alone is 52.28+14.90 years.
The dataset used contains 8516 expressions. According
to the bioinformatics analysis, the first 10 results are
summarized concerning minimum adjusted p values
in Table 1. As shown in Table 1, five genes (ID: 1474, 1817,
6277, 4496, and 7165) were downregulated, and the other
five genes were unregulated.

Table 2 presents descriptive statistics for the selected
genes concerning the groups. According to Table 2,
Log,FCvalues for the IGFBP3, HGFAC, SLC39A14, CXCL12,
PLG, FBP1, RNF26, ACBD6, C8A, and CCT3 were -1.54,
-1.79, -1.06, -0.96, -0.92, -1.27, 0.46, 0.65,1.02, and 0.66,
respectively. Significant differences were determined
in PFAS, FRA16B, GCNT2, GKP5, MEN1, MUC4, RBM12,
RNF26, TIMP3, MCM3, VPS28, CRY1, SF3B2, H3CI],
ACBD6, and FLJ10233 between the groups (p<0.05).
CYP24A1 and homo sapiens chromosome 5 clone RP11-
998B18 complete sequence genes were not significantly
different between the groups (p>0.05).

The volcano plot used to visualize differentially
expressed genes is given in Figure 1. On the y- and x-axes,
the significance of the volcano graph plots versus the

Table 1. Top 10 results of the bioinformatics analysis.
ID Adj p-value |t B Log FC Gene name Symbol Diff.
p-value 2 expressed

1474 | 0.000194 |3.9E-08 |-63807897 | 8583  |-154416328 [RUIRLQ EFONINEEET | jomes | By
binding protein 3

1817 | 0.000586 |2.58E-07 |-5.8319577 |6.6719 |-179464629 | HGF activator HGFAC Down
Solute carrier family

6277 |0.000586 |2.89E-07 |-58012278 |6.5658 |-1.06482155 |39 (zinc transporter) SLC39A14 | Down
member 14
Chemokine (C-X-C motif)

4712 | 0.000737 | 4.85E-07 |-5.66363 |6.0922 |-0.96830095 |ligand 12 (stromalcell- | CXCL12 | No
derived factor 1)

10469 | 0.001358 | 1.26E-06 |-5.4088551 |5.2226 |-0.92433824 | Plasminogen PLG No

4496 | 0.001358 | 134E-06 |-53910676 |51623 |-1.27427529 Fructose-1.6- FBPI Down
bisphosphatase 1

5608 | 0.001514 |175E-06 |53196011 |4.9206 |0.4605353 Ring finger protein 26 RNF26 No

10010 | 0.001514 | 2.07E-06 | 52740142 | 47669 |0.65932271 Acyl-Coenzyme A binding | , g No
domain containing 6

7165 | 0.001514 | 2.24E-06 |-52517915 | 4.6921 |-1.0231292 Complement component | g, Down
8. alpha polypeptide

9041 | 0.002071 |341E-06 |51374571 | 4309 | 0.66934959 | Shaperonin containing | . -rq No
TCP1. subunit 3 (gamma)
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fold change in log2 base show differentially expressed
genes quickly.

Eighteen expression results were obtained by applying
the LASSO feature-selection method to 8516 expression
results. The explanations of the dataset with the selected
expressions, examined target variable, and OR per gene
for the target variable are presented in Table 2. The
findings of the performance metrics from the XGBoost
model are provided in Table 3.

Accuracy, balanced accuracy, sensitivity, specificity,
positive-predictive value, negative-predictive value,
and F1 score obtained from the XGBoost model were
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98.1%, 98.6%, 100%, 97.2%, 94.4%, 100%, and 97.1%,
respectively. The performance criteria values are plotted
for the XGBoost model in Figure 2. Figure 3 shows the
importance levels of expressions for the selected genes
in explaining the output variable. RNF26 had the highest
predictor importance of 100.0%, followed by FLJ10233 at
66.21% and ACBD6 at 51.47%.

DISCUSSION

Although the gene expression profiling structure
of HCC and the background liver has been widely
examined™, ML-based prediction of HBV-related HCC
and detection of crucial candidate biomarkers have not

Table 2. Descriptive statistics for the selected genes concerning the groups.
Groups

Prop _ _
Gene name HBV + HCC (n=17) HBYV alone (n=36)

number OR p-value

Mean * SD Median (min-max) | Mean * SD Median (min-max)

CYP24A1 1591 -0.11£0.35 -0.10 (-0.65-0.80) 0.06%0.53 0.20 (-0.94-1.41) = 0.153*
PFAS 2390 +0.82+0.81 +0.59 (-0.42-2.52) 0.12£0.45 0.14 (-1.28-1.14) 10 <0.001**
FRAI6B 2461 -0.16x0.30 -0.12 (-0.72-0.45) 0.20+0.39 0.25(-0.54-1.09) 0.06 |0.002
GCNT2 2651 -1.35+£0.98 -1.23(-2.99-0.39) -0.56%0.53 -0.56 (-1.73-0.95) 0.21 <0.001*
GKP5 2715 -0.93+0.93 -0.59 (-3.52-0.10) 0.04%0.81 0.20 (-3.02-1.61) 0.24 <0.001**
MENI 3785 +0.21£0.44 +0.30 (-0.53-0.90) 0.0210.24 +0.02 (-0.60-0.57) | 6.89 0.042*
Homo sapiens
chromosome 5 .
clone RP11-998B18 4219 +0.20+0.58 +0.29 (-0.64-1.21) -0.08%0.41 -0.07 (-1.08-0.86) 3.52 0.090
complete sequence
MUC4 4585 +1.08%0.91 +1.28 (-0.37-2.97) 0.22+0.77 +0.35 (-1.84-2.46) 3.83 0.001*
RBMI2 5520 +0.38+0.39 +0.30 (-0.246-1.11) -0.1420.31 -0.19 (-1.03-0.47) 170 <0.001*
RNF26 5608 +0.51+0.31 +0.45 (-0.01-1.20) 0.05%+0.23 +0.02 (-0.37-0.55) 722 <0.001*
TIMP3 5815 +0.56%0.55 +0.57 (-0.75-1.26) -0.02+0.46 +0.02 (-0.85-1.08) 10 <0.001*
MCM3 5906 +1.20+0.91 +1.05 (0.09-3.69) 0.20+0.65 +0.27 (-1.97-1.39) 9.99 <0.001**
VPS28 6292 +0.66+0.38 +0.64 (-0.24-1.49) 0.23+0.31 +0.27 (-0.63-0.69) | 225 <0.001**
CRYI1 6377 +0.15x0.30 +0.09 (-0.27-0.80) 0.56+0.53 +0.53 (-0.53-1.89) 0.1 0.001
SF3B2 8061 +0.09+0.50 +0.23 (-1.26-0.58) -0.19+t0.33 -0.18 (-0.88-0.50) 7.38 0.007
H3CIi 8354 +0.35%0.51 +0.38 (-0.77-1.29) -0.26+0.45 -0.19 (-1.53-0.70) 22 <0.001*
ACBD6 10010 +0.56+0.61 +0.43 (-0.52-1.90) -0.10%0.29 -0.15 (-0.57-0.61) 57 <0.001*
FLJ10233 10333 +0.08+0.50 +0.14 (-1.44-0.68) -0.31x0.29 -0.26 (-0.78-0.20) 26 <0.001**
*Independent samples t-test, **Mann-Whitney U test, OR: Odds ratio, SD: Standard deviation, min-max: Minimum-maximum, HBV: Hepatitis B virus,
HCC: Hepatocellular carcinoma, HBV + HCC: Hepatitis B virus-related hepatocellular carcinoma
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been clarified using an Al approach. Thence, this study
intends to classify HBV-related HCC and HBV without
HCC gene expression data using the XGBoost method
and identify important genes that may cause HCC.

Table 3. Performance metrics of the XGBoost model.

Metric Value (%) (95% CI)
Accuracy 98.1(94.5-1)
Balanced accuracy 98.6 (95.5-1)
Sensitivity 100 (80.5-1)
Specificity 97.2 (85.5-99.9)

Positive-predictive value 94.4(72.7-99.9)

HBV is widespread worldwide, with varying levels of
infection in different regions. According to the World
Health Organization, approximately two billion people
have been infected with HBV worldwide, with 240 million
people infected with chronic HBV and approximately
650,000 people die annually from hepatic failure and
liver cirrhosis and HCC caused by HBV infection. HBV
infection is responsible for 30% and 45% of patients with
liver cirrhosis and HCC worldwide?*%,

The overall survival of patients with HCC is low, and the
management of HCC risk factors needs to be rationally
expanded to reduce the burden of HCC worldwide.
There is a growing interest in genomics and molecular

Negative-predictive value 100 (90-1) ) ) ; ) . ;
F1 score 97.1(95.4-1) biology research to identify <.j|agn05|s early, prognostic
- - markers, and new therapeutic targets to uncover the
Cl: Confidence interval ) . . . .
mechanisms of liver carcinogenesis and thus improve the
1817° - 6217
= 7165 s
3 2270, diffexpressed
f‘ & DOWN

~

Figure 1. Volcano plot.
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95 -
94
93
92
91 - T T T T T T

Percent (%)
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value value

Metrics

Figure 2. Values for the performance criteria obtained
from XGBoost models.
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clinical management of patients with HCC. Building on
these studies, advances in HCC surveillance promise to
significantly reduce the worldwide burden of HCC over
the next few decades?%,

In the dataset analyzed in this study, the genomic
data of samples obtained from liver tissues of 17
patients with HBV-related HCC and 36 with chronic
HBV without HCC were used for the relevant analyses.
cDNA microarrays were obtained from the samples, and
the dataset used contained 8516 expressions. According
to the Log,FC values used to determine the expression
fold changes between the two groups from the findings
of the bioinformatics analyses (Table 2), IGFBP3 has
2.90-fold lower gene expression in patients with HBV-
related HCC than in patients with chronic HBV. Similarly,
HGFAC had 3.45-fold lower gene expression, SLC39A14
had 2.08-fold, FBP1 had 2.41-fold, and C8A had 2.02-fold
lower gene expression. CXCL12, PLG, RNF26, and ACBD6
had the same expression between the two groups. In
this instance, gene expression data are so large that
modeling with these datasets can result in long analysis
times and computational inefficiency. Therefore, before
modeling with the existing dataset, the most important
genes associated with the output variable were selected
with the LASSO variable-selection method. Eighteen
genes selected by the LASSO method were used in
building the XGBoost model. The accuracy, balanced
accuracy, sensitivity, specificity, positive and negative-
predictive values, and F1 score metrics obtained with
the XGBoost model were 98.1%, 98.6%, 100%, 97.2%,
94.4%, 100%, and 97.1%, respectively. The performance
metrics indicated that the proposed XGBoost model
could correctly classify two groups of patients based
on the Al approach. Among the genes whose OR
values were calculated, RNF26 (OR =722), VPS28 (OR
=225), RBMI2 (OR =170), ACBD6 (OR =57), FLJ10233
(OR =26), H3CIl (OR =22), PFAS (OR =10), and TIMP3
(OR =10) genes were found to have the highest OR values,
respectively. According to the variable importance
obtained from XGBoost, RNF26, FLJ10233, ACBDS,
RBM12, PFAS, H3CI1, and GKP5 can be used as candidate
predictive biomarkers of HBV-related HCC. In addition,
the calculated OR values and variable importance
values in the study support each other. According to
variable significance results, genes with huge OR values
were determined as genes contributing to HBV-related
HCC development. Additionally, the proposed pipeline
produced a volcano plot, representing the up- and
downregulation of the genes. These plots are becoming
more common in omics experiments, such as genomics,
proteomics, and metabolomics, where there are often
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thousands of replicate data points between two
conditions?.

A medical study reported that RNF26 was abnormally
expressed in patients with HCC?. In another study, VPS28
was upregulated®. Another study showed that a high
RBMI2 level in HCC indicates a poor patient prognosis?.
Onestudy reported that ACBD6 was expressed differently
in HCC and chronic hepatitis®*®. In a study, high-grade
tumors exhibited progressively higher levels of PFAS,
ATIC, IMPDHI1, IMPDH2, GMPS, and ADSL than low-grade
tumors or normal liver tissue®. In one study, TIMP3 was
found as a candidate gene in HBV-related HCC®. Another
study determined that epigenetic methylation of TIMP3
is associated with HBV-associated HCC®,

In a study, SHCBPI, FOXMI, KIF4A, ANLN, KIFI5,
KIF18A, FANCI, NEK2, ECT2,and RAD51IAP] were found as
the top 10 most important genes for HBV-related HCC3,
In addition, patients with FOXMI1, NEK2, RAD5IAPI,
ANLN, and KIF18A showed worse overall survival. In
another study with HCC, the expression levels for PERI,
PER2, PER3, and CRY2 genes were lower®. Another study
showed that high expression of FOXMI causes a poor
prognosis for HBV-related HCC and promotes tumor
metastasis®®.

All diseases that cause chronic liver damage are risk
factors for HCC development. Therefore, international
guidelines’ follow-up of such patients is crucial for
detecting possible HCC or its detection at an early
stage¥. The most authoritative guidelines on monitoring
patients with chronic liver are published periodically
by European Association for the Study of the Liver,
Asian-Pacific Association for the Study of the Liver, and
American Association for the Study of Liver Diseases®.
The tumor doubling time of HCC varies between 4 and
6 months. Therefore, the abovementioned guidelines
suggest that patients with chronic liver disease without
HCC should be followed up with ultrasonography (US)
and alpha-fetoprotein (AFP) at 6-month intervals?.
Patients with suspected HCC (nodule diameter <10 mm)
should be followed up with US and AFP at 3 or 6-month
intervals. Patients with a strong suspicion of HCC should
be followed up with US and AFP. Patients with nodule
diameter >10 mm and/or AFP >20 ng/mL should be
evaluated further with radiological examinations¥.

However, these approaches may not always provide
the expected results because it is not always easy for
patients to reach healthcare providersin underdeveloped
or developing countries. False-negative results may
be higher than expected, because US is an operator-
dependent examination. There is a correlation between
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the duration of chronic liver disease and probability of
HCC development. As in all other cancer types, gene
mutation and mutation-related mMRNA expression
changes are expected in HCC. Therefore, in the follow-
up of patients with chronic liver disease, fundamental
geneticanalysis can be performed after a certain period to
determine whether there is a genetic mutation. As shown
in our results, if changes are detected in the expression
of genes that are strongly associated with HCC, patients
can be followed more closely, and preventive treatments
can be initiated when necessary. However, there is no
evidence-based data on when genetic analysis should
be performed on chronic liver disease. Therefore, a
prospective multicenter study is needed to determine
the timing of genetic analysis for patients with chronic
liver disease. With this important finding, increasing the
number of patients may further increase the scope of
genetic information and power of the study.

CONCLUSION

In conclusion, this study revealed possible genomic
biomarkers of HBV-related HCC using gene expression
data from patients with HBV-related HCC and patients
with chronic HBV alone. The reliability of the genes
obtained with more comprehensive analyses to be made
in the future can be tested, treatment approaches can
be developed based on these genes, and their usability
in clinical practice can be detailed. Thus, individual-
based treatments and immunotherapy approaches more
applicable to clinical practice are possible.
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